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The variational problem for a wing with the maximum lift/drag ratio and given volume is 

solved with the assumptions that the pressure obeys to Newton’s law, that the wing 

is thin and that the frictional resistance is independent of the form of the profile of the 

wing. 

It is shown that the wing with the maximum lift/drag ratio has a profile that differs 

from the profile of the wing with minimum wave resistance. The optimum profile depends on 

the given volume and frictional resistance and may be anything from the wedge, to the 

profile of the wing with minimum wave resistance. 

The possibility of seeking an optimal form for 

a supersonic aircraft is limited practically by the 

solution of variational problems formulated with the 

aid of the simplest relationships between the pressure 

and the form, for example the Newton’s Law, and by 

the comparison with the bodies of the simplest form, 

given for example in [l to 31. 

FIG. 1 Variational problems, even in the case where 

Newtonian Law applies, generally reduce to non-linear 

equations in second order partial derivatives; in order to avoid this, usually the thin body 

assumption is made. Newtonian Law itself and the aforementioned assumption of a thin 

body lead to the conclusion that the solution of the variational problem obtained, can be 

considered only as a guide, furnishing the basis for a more thorough investigation. 

In the case of the wing, of course, with these assumptions it is impossible to account 

properly for the effect of the blunting of the leading edge. Besides, it turns out that the 

form of the leading edge, with the assumptions used, does not influence the aerodynamic 

characteristics of the wing, which depend only on the distribution of area over the sweep 

of the wing (the displacement of the longitudinal sections of the wing in the plane parallel 
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to xz, does not influence the characteristics). 

The variational problem of a wing of given volume with minimum wave resistance for 

a given lift was considered by the author previously, and analogous results were obtained 

recently in [4]. Th e solution to the problem of a wing with the maximum lift/drag ratio is 

given below. 

Let the lower and upper surfaces of the wing be given by the functions ~1 = .rr (2, y), 

2, = 22 (I, Y) (fig.1). Then, with the aforementioned assumptions the drag, the lift and 

the volume of the wing may be expressed in the form 

x = xo + (pra + ~~2s) dxdy = X, + 13, Z= 
ss 

(P? - Pat) dxdy = 12, 

v= SC (21 + 22) dxdy = I, 

Here X,, is the component of the frontal resistance that may be considered approximately 

independent of the wing profile (frictional resistance, resistance of the blunt edge). 

We will designate by the letter K the lift/drag ratio of the wing. The variational pro- 

blem is posed in the following form : 

12 
K=m=max with Il = const 

We shall not vary the contour of the wing in the plane xy. Then, using the fact that 

the variation 62 = (82 / &Z) aa, 6p = (a / as) 6z, by the condition of equality of 

variation 6 (K + XV) = 0 (h is an undetermined constant multiplier) we obtain 

2Pl - IBEX,, p+zl-((2ps++P+z.]dy+ 

+ SSI[ 

313 ap12 
-_ 

A ('3 + xd + I3 + X0 dl: 2-g+ + 

+[h&+ Xo)+&~+2~]6z,}dxdy-0 

(2) 

The first integral is taken along the 

on the functions zr and z1 we obtain 

a - 
az 

contour of the wing. From the extremal condition 

- 2Pl 1 
+ h (I.3 + X0) = 0 

t 4 + ?‘, (18 + X0) = 0 
(3) 

Assuming that on the leading edge of the wing zr and za are given, that is 

6z, = 6z, = 0, while the boundary conditions on the trailing edge x = x2 (y) are the 

expscted ones, we obtain for this edge 

Pl 2-- ( *m =a 
) 

Pa t 2+15 P&-O (4) 

We will restrict ourselves to the wing, on the whole of the surface of which the pres- 

sure coefficient is non-negative ; then the only possible value for pa on the trailing edge 
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becomes pa (;tz) = 0 ; hence, the value p1 (zz) = 0 proves to be impossible, since, if it 

were accepted, the eqoality p1 (z) = - pz (2) , which does not correspond to the conditions 

of the problem, would follow. Therefore the only valne for p1 is 

FIG. 2 

Integrating (3) end determining the arbitrary 

function of y from the conditions on the trailing 

edge, we get 

pz (x) = I* [ )/1+3M(za-4-11 

We will continue the integration, with the 

assumption that the leading edge 5 = zr (y) 

is sitnated in the plane 

Then 

From the formulas (5) and (6) it may be seen that the resulting profile of the wing is 

symmetrical with respect to the ordinate 

The angle of attach corresponding to the maximum lift/drag ratio is 

(8) 

The angle of inclination of the profile on the trailing edge equal f u , and therefore 

the pressure becomes zero only on the trailing edge of the upper surface of the wing. 

The profile of the wing of given volume with minimum drag for the boundary conditions 

existing on the trailing edge fs, of course, symmetrical and is given by the formula 

Limiting cases for the profile of the wing with the maximum lift/drag ratio are 

3M (zp - 23 > 1 

2 - [(zz - z,)% - (zs - @*I 

318% (zr - Zl) < 1 

2 - (2 - it’ll 
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FIG. 3 

that is, all the possible profiles of the wing with the maximum lift/drag ratio and given 

volume are included between the wedge and the profile 2 - (2 - E)% (fig. 2). For deter- 

mining the profile (7) we must compute the integrals 

I2 = (w,“ss 1/l + 3I& (x2 - x) dx dy (10) 

As an example we will give the complete results for the case of a triangular wing, is, 

xa fv) - 9(Y)=: h(l- y), where 1 is the half-span of the wing. 

11 9 
mu (Ta e X0) (1 + 31abklf~L - 

(1 -f; 3I&kl,‘~~ - 1 

15 (3ZsX)8 'J4 31sbkl 

(I11 

Is 
_ *zS& y&x0)3 [ !I~,~~~~~- 1 + (I~~~~~~~~~- 1 _ g] 

At this stage we shall introduce dimensionless gnantities: ;, = 31&l, i3 = I, f la, 

20 = x, / la, i, = I, / Pk’ls, m = hPk”*. Substituting these into (11) we obtain 

5ia 

4 (SO+ &Pm8 

_(i+i,)‘/n+7(1 +ir$‘t-21ir-8 

7Jai8 

15il 

8 (~0 + id m 

(12) 

With the help of the formulas (12) it is not difficult to cottatract graphs showing the 

dependence of ia, i,, and m OR the given psrametsts x0 and il. 

For the wing with the wedge profile 



A wing with the maximum lift/drag ratio at supersonic velocity 231 

Kv = l/21 : v-at 

V -- 
) ’ - k”l3 9 

The curve Ku, as a function of v-1 E ‘/a is given in fig. 3 (dotted line) for comparison with 

the wing with the maximum lift/drag ratio. For values of the parameter o-rg’/r greater 

than those given in fig. 3, the optimum profile, apparently, must include a part on which 

pp =o. 

From the formula (13) it may be seen that the optimum dimension of the wing is 

‘I 
E 71 

v = 32 9 0 
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